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DIFFUSION OF THE SELF MAGNETIC FIELDS OF AN ELECTRON BEAM
THROUGH A RESISTIVE TOROIDAL CHAMBER

I. Introduction

Extensive work has been done in the past on the diffusion of external

nagnetic fields into hollow circular cylindrical conductors of infinite

length 1- and also on the diffusion of the self magnetic field of beams out

of hollow cylinders.6-9  The beam self magnetic field diffusion studies

have also considered the effect of the diffusing fields on the beam

dynamics and have furnished interesting results on the beam stability
6-8

and beam trapping.9 However, these studies are linear and the expressions

for the fields are valid only near the axis of the cylinder.

Following the installation of strong focusing windings in the NRL

modified betatron accelerator it is routinely observed that for several

combinations of injection parameters the injected beam consistently spirals

from the injection position to the magnetic minor axis and is trapped.
10'11

Attempts to explain this interesting phenomenon using the existing linear

resistive model have been unsuccessful.11 The decay rate predicted by the

linear theory9 for the parameters of the experiment is at least 10-20 times

longer than that observed in the experiment, even when wake field effects

are taken into account.
12

In contrast to the analysis9'12 that assumes the beam to be

near the minor axis, the beam in the experiment during injection is at

least temporarily near the wall. In addition, the geometry of the NRL

device is toroidal10 and not cylindrical and, therefore, there are

additional characteristic times5 that may modify the diffusion process.

The present work extends the results of the linear theory. The

expressions for the diffusing fields are valid not only near the axis but

almost over the entire cross-section of the chamber and toroidal effects

Manscript approved April 24. 1992.



are-Ancluded to lovest order. The results have been obtained under the

folloving assumptions. First, it is assumed that the toroidal vacuum

chamber has a small aspect ratio, i.e., the results are valid provided that

the ratio of the minor to the major radius is much less than unity and the

radial distances of the observation point from the minor axis is

considerably smaller than the major radius of the torus. Second, since the

results are confined in the vicinity of the toroidal ciamber, propagation

effects do not play any role, i.e., the displacement current is omitted in

Maxvell's equa ions. Third, in order to obtain tracktable analytical

results, it is assumed that the conducting vall is thin, i.e., its

thickness is much smaller than the minor radius of the torus. In this

case, the analytical results are not valid very near the conducting vall.

In the limit vhen the ratio of the vall thickness to the minor radius of

the torus tends to zero, i.e., for a toroidal conducting shell, the

analytical results are exact everyvhere inside of the toroidal vessel.

Finally, the analytical results on the beam dynamics are further simplified

under the assumption that the current ring moves slovly in comparison to

the fastest of the characteristic times that dictate the diffusion process.

Under the assumptions mentioned above, it is found that there are

three characteristic times vith vhich the magnetic field leaks out of a

resistive torus, vhen a current ring turns on at t - 0 inside the torus.

The shortest is the "plane" or "fast" diffusion time CFD - poo(b-a)2/n2

vhere a is the vall conductivity, a and b are the inner and outer minor

radii of the conducting wall and p is the permeability of the vacuum. The

terms associated vith TFD are responsible for the electric field to be zero

at t=0 outside the torus since no leakage has occurred as yet. The

"cylinder" diffusion time TD - poo(b-a)a/2 together vith TFD determines the

speed vith vhich the fields penetrate the vall chamber so that the images

2



of these fields gradually disappear. Finally, the "loop" diffusion time

,C - 2,cD [tn (8ro/a) - 2], vhere ro is the major radius of the torus,

determines the speed vith vhich the fields diffuse into the hole of the

doughnut and is responsible for the gradual disappearance of the vall

current. It turns out that the radial component of the self magnetic

field, vhich is responsible for the beam trapping in the MBA, is

independent of %o, and, therefore, the "loop" diffusion time does not play

any role in the resistive trapping of the beam. The expressions of the

fields predicted by the present york have been used to compute the beam

centroid orbit and several other trapping parameters measured in recent

detailed beam trapping studies 13 in the NRL modified betatron accelerator.

The shape of the computed orbits is very similar to those observed in the

experiment.

In Section II, the diffusion problem for a current ring inside a

toroidal conductor is formulated. In Section III, the vector potential for

a current ring in the absence of the conductor is derived. This is the

particular solution of the problem. In Section IV, the homogeneous

solution inside and outside the torus (but not inside the conductor) is

derived in toroidal geometry. The toroidal geometry removes the ambiguity

on the value of certain constants associated vith the logarithmic

dependence of the solutions. In Section V, the initial conditions are

established that determine the time-dependent arbitrary parameters in the

homogeneous solutions. In Section VI, the solution inside the conductor is

derived and the boundary conditions are applied. The vector potential is

computed in the three regions inside and outside the torus and inside the

conductor. In Section VII, approximate results are obtained under the

assumption of a thin conducting vall. Section VIII contains exact analytic

results for the shell model and Section IX provides a summary of the main

results and lists the most important conclusions of the present study.

3



II... Formulation of the Diffusion Problem

The configuration and system of coordinates is shown in Fig. 1. The

toroidal chamber has a major radius ro, an inner and outer minor radius a

and b, respectively, and conductivity a. In the presence of an external

driver, namely, a current ring which is axisymmetric, time-dependent and is

located inside the torus, the magnetic vector potential in that region is

determined by the equation

x x 1 n _ (1)
in

vhere the vector potential I has only one nonzero component Ai that

depends only on the cylindrical components (rz) and on time. The current

density I of the current ring has only one nonzero component Ja which is

equal to J - Ic/nr2 inside the ring and zero outside it. Here, Ic is the

ring current and rc is its minor radius.

The magnetic field inside the conductor is determined from the vector

potential Icon that is described by the diffusion equation

x -o - 1J0 a'- (2)
Icon

where, again, Xon has only one component A0  , which depends on (r,z) and

on time. Finally, the vector potential outside the torus is determined by

the homogeneous equation

4 lout - 0 (3)

where the component A of out depends on (r,z) and on time. The

magnetic and electric field components, in each region, are given by

4



Ae (4a)

r a'

B2 BrAe0(b

r8r

S-- (4c)

vhere Ae is one of the components defined above, depending on the region of

interest. Notice that Eq. (2) is identical to Ampere's lay combined vith

Ohm's lay inside the conductor.

It is convenient to express the vector potential and the fields in

terms of the local cylindrical coordinates (p,#) vhich are related to the

global cylindrical coordinates (r,z) by:

r = r0 + pcos*, (5a)

z - psin+. (5b)

Then, in the region inside the conductor, Eq. (2) reduces to

con con
con a2Acon Cos# TA0 - sin#1 Ae

1 a. r0 1 pcos*

A con  !Aj.,n

e + Vo -a t (6)

(r0 + Pcos+)
2  o at

after taking account of the fact that Aon is independent of the toroidal

angle 0. Also, in the local coordinate system Eqs. (4a), (4b) are replaced

by

B 1 8A0  sin# (7a)P p S- r0 + Pcos+Ae,

5



B + Co#8P r 0 A0, (7b)

vhile Eq. (4c) remains the same.

At the surface of the toroidal conductor, i.e., at p = a and p b,

the tangential components of the electric and magnetic fields are

continuous. Therefore, in the local coordinate system, the boundary

conditions are:

in con
Ei (p - a, #,t) - E0  (p - a, #,t), (8a)

out conE0  (p - b, *,t) .e (p b, *,t), (8b)

in n
Bi (p - a, ,t) B o (p - a, *,t), (8)

BOUt con

(p - b, 4,t) - B (p- b, 4,t). (8d)

Since the vector potential is zero at t - 0, the first two boundary

conditions can also be expressed as

in acon (a
Ai (p = a, #,t) A A0  (P a, 4,t), (9a)

Aout .con

A (o = b, 4,t) c An (p b, 4,t). (9b)

Thus, the diffusion fields in the three regions inside and outside the

torus and inside the conductor are determined by the solutions of Eqs. (1),

(3) and (6) vith the boundary conditions given by Eqs. (9a), (9b), (8c) and

(8d) on the inner and outer surface of the toroidal conductor.

6



IIIi.Vector Potential of a Current Ring

In this section, an approximate expression for the vector potential of

a current ring external driver is obtained. This is the particular

solution of Eq. (1). For that purpose, the toroidal coordinate system

associated vith the current ring is used. Toroidal coordinates are most

appropriate for a toroidal conductor and their significance vill become

evident in the next section vhen the arbitrariness as to the value of

certain constants in the solution is removed.

The global cylindrical coordinates (r,z) are related to the ring

toroidal coordinates (n',&') by:

r - b sinh (lOa)r c coshn' - cos

z - bc  sin&, ' V1b
z cosh'- (lOb)

vhere bc is a constant. These relations can be easily inverted, namely:

0(r b b2 Z2

e (r bc) +z (1a)2 2'

e- 1 sin e -
2 1' (1ic)

According to Eq. (11a), vhen n' is fixed, the coordinates (r,z) describe a

circle vhose radius is bc/sinhn'. If for n' . n'c this circle coincides

vith the current ring surface vhose major radius is Rc, then it is

straightforvard to shov that bc = [R2 - r2] 1/2 . The points (Tn',F') outside

7



the-ring are determined by the inequality I' < fie, vhile the points inside

the ring are determined by )i' > v'Vc

In the absence of the toroidal conductor, the solution of Sq. (1) for

a current ring vith constant current density J9 a IT/mrc 2 is equal to

Axt oe rcos(e le d3 x", (12)

V

vhere i' and x" are the observation point and a point inside the ring,

respectively,, and the integration Is over the volume V of the ring. The

Green's function of I ' - it 1-1, in toroidal geometry is equal to 14

1 1 1 ) 1 - cos ')1/2(cosh n" - cos E")1/2
j• * I -H7 (cosh

I 1

m,n=O 2(m)n+i)

a - 1/2 (cosh 1V) n - 1 / 2 (cosh '" > T' }, (13)

pn (cosh Vi") On (cosh iT'); VI" < 'V
m- 1/2 a- 1/2

vhere c - 1, Ca - 2 when m - 1, 2, 3, ... , r(x) is the gamma function, and

pn - 1/2 (cosh ), 1/2 (cosh ni) are the associated Legendre functions

of the first and second kind, respectively. Without giving the details of

the calculation, substitution of Eq. (13) into Eq. (12) leads to

the folloving expression of the vector potential of the current ring:

A ext . b (cosh n, - cos V')1/2 Z maeXt O(cosh q) cos 1 /2e c m On-1/2

maO

M-



+ bC(cosh "' - cos ,)1 ext .m 1/2 (cosh n') cos a'

R=O

(14a)

inside the current ring, i.e., vhen n' > IIIC and

a

A xt . b (cosh 0' - cos t,)1/2 Z %bxt (cosh n') cos e c 2 pa 1/2(os 'cs ,

mo

(14b)

outside the current ring, i.e., vhen n' < 'c' vhere

a - 4V/ 10I b 1 fp 1 / (cosh 11")02 1/2 (cosh re")d
3n2 r 2 T m -1/2 12

(15a)

cxob 1 (cosh n") osh TV)

a 21 m 1/2 - 1/2 (c sinh Ti"

(15b)

ext l 041ocbc 1 (cosh h n) d"
U2 2 c2 1 - 1/2 -1/2 (cosh sinh n"'

r 4 in c

(15c)

and -= tn [(R. + rc + bc)/(R c + rc - bc) ]. In the derivation of Eqs.

(14a), (14b) from Eq. (12), use vas made of the identity 14

J( os - d " 4r am 2_ 1/2 (cosh r") (16)
cosh " - cost" ) 3 sinh In"

0

9



The toroidal functions P (cosh rI) andn (coshr - 1/2 .. .. a 1/2

appearing in Eqs. (13), (14a), (14b), (15a), (15b) and (15c) are given by

the following exact expressions: 
15

(m-n - 1

-1 
2 n = 72 r(r nm)2m 1/2 (oh n 1/2 r(m -n + 1) (sinh 11)e

m-1 (n + 1n a +

(1.- ) "E- 2) (- P e-

.0 st3-s-O

(-1)n 2n+1r(m+n+l)

+ 3/2'r(m+n) (sinh TI)n e
n 1r(m+l)

1 1

*• A.2t t 4~ + u5 + u.+, - ,,,-,++]
S-t

(17a)

S2 (-1)nnl/2 r(m+n+l)
n (cosh ) - (sinh 1)n
m 1/2 r(m 1)

1(n aT (n+') (m+n+')
- (m+n+t-).j 2n+s  2 s .

e sI(m+)s e ,2st (17b)

SWO

where

(a)s a(a+l)(a+2)...(a+s-1), (a)o - 1, (18a)

n

1 k
un ~ £i, u° -O, (18b)

k-1

10



n

Vn= X 2k- 1' Vo 0. (18c)

k-l

For a-O, the first term in Eq. (17a) is omitted, since 6n 1 for m n,

and &mn - 0 for m 0 n. The expressions above are appropriate for the

region inside as veil as outside the torus but on its vicinity.

Up to this point, the results given above are exact. In the

folloving, an approximate expression of Aext rill be obtained from Eqs.

(14a) and (14b) under the assumption of a small aspect ratio rc/Rc of the

current ring by keeping terms up to order e . Notice that, vhen rc/Rc

<< 1, then to first order in the aspect ratio, or to first order in the

toroidal corrections, ve have the approximate relations: bc a Rc, •c

= rc/2Rc and e- 11 = P,/2Rc. Here, (p', +') are the local cylindrical

coordinates vith respect to the ring position, i.e.,

r - Rc + P' cos ', (19a)

z - p' sin #'. (19b)

Making use of the identity

(cosh ,' - cos &91/2 =Z . Dm (,) cosm &', (20)
mwo

vhere

D(n ') ) e- 1/2 (cosh n') - 2- ' Q1/2 (cosh I'),0 n1+e-2.

(21a)

11



"t~~) (e 2 rj) [Q 1  (cosh I')

1eI2', (O,-1,2 (cosh vi') + Q),+ 1 12 (cosh I'))], (21b)

and also of Eq. (17b), a straightforward calculation leads to the

approximate expression, to first order in toroidal corrections,

b (cosh i'-cost')1/2 7 Cma ext (cosh n') cos a k
cB m -Ql 1/2

bc [aext ext ext) osE 1 (2
2 (a0  - 1 a e"cos(2

The number of terms kept on the right hand side of Eq. (22) was determined

by the fact that the quantities b~ aext are of zero order in toroidal
U

corrections, as is indicated by Eqs. (15a), (17a) and (17b). Similarly,

the quantities b bext and b cex are of order (b /r )2 e-2(m+l)vI' orc m cm 2Cc

2 -2 (m+1 ) Ii(b c/r ) e .and, consequently, we have the approximate expression

b (cosh n' - cos&')1/2  mbext mP-1/ (cosh il') cosm El'

L2 bc [bext (En (4e) W 2)

~b:x (En (4e~1  2) e- csV- 2b~x 1 e Cos k, 1 (23)

to first order in toroidal corrections. The same relation above holds for

the quantities b cext.c m

From Eqs. (14a), (14b), (19a), (19b), (22) and (23), it follows that

in the local coordinate system (p', *') of the current ring and to first

order in rc/Rc, we have inside the ring, i.e., when p' S rc:

12



etext Rt (aext -- ext) P'Cos*'1
20 0.- a 1 R ca 3ir2 RO

- . cxt E Lc 2) + :xt __ Cos*

BR R co*
c, et BRP "

-- 'cOet '  (24a)
Rc  n )- c p

vhile outsid. the ring, i.e., vhen p' rc , ve have:

ext b[ et(ext r 2 CO5*")

x R [bext (I _R 'o

bxt p'Cos' (,S I 8 ext (24b)
C 2 c -- 2' - 4b 1"

Next, ve need the approximate expressions, to first order in rc/R c ,

for the quantities R a ext, R C ext and R bext, vhen m - 0, 1. From Eqs.

(15a), (15b), (15c), (17a), and (17b), it is easy to shov that

r22

e~xt "~OC [I R-C- - (In c )](2a

ce~= r-a lc 2r' c 'c o 2
C e  5 2 OIc [G

RCxt= =- 0 ()_, (25b)

ext , 0 C (25d)

2 2r

c c

13



R bx 1(25e)

R bet 64 2p (25f)

Substitution of Eqs. (25a) through (25f) into Eqs. (24a) and (24b)

leads to the following expressions for A x to first order In r /R in the

local coordinate system of the ring:

Aext O r Rc ,2
e finC 32 2 G

vhen p' < r C, and

Aext M % [n c- 2l
A0  in- c It P '

UO , 'o, tIO 1[n 8RC 3  j c)2], (26b)

when P1 r c. Let (A, a) be the ring position in the local cylindrical

coordinates of the toroidal conductor (cf. Eqs. (5a), (5b)). Then, in the

relation above, R c p' and p'cos+' are replaced by

Re r + A Cos 2, (27a)

P 1 P + 62 -2 PA Cos(. ] 1/ (27b)

P, Cos *' -pCos * - A Cos a. (27c)

14



.Equations (26a) and (26b) are useful in the diffusion problem of a

current ring inside a toroidal conducting shell vith first order toroidal

corrections. This rill be reported elsevhere. Here, only the zero order

solution to the diffusion problem is considered. In this case, the vector

potential of the current ring, in the absence of the conductor, is equal to

A A Ic [In ea- U- rr (28a)00r - 2x' Lr ~c

inside the ring, and

ex " n Bo 2 (28b)

outside the ring. Equation (28b) can also be vritten as:

Ae x t  Uo  (In 8ro 2)
go - n-c -

- I Ectn + - 2 -2 cos (*- in)]. (28c)

This expression of the ring vector potential is used in the application of

the boundary conditions at the inner surface of the toroidal conductor.

15



IV. .Homogeneous Solution of the Vector Potential

Inside the torus, the most general solution of Eq. (1) is

in ext +inA0
n

. A0
x  +Ah, (29)

where Ai is the homogeneous solution of Eq. (1). The exact homogeneous

h

solution can be expressed most appropriately in toroidal coordinates vith

respect to the toroidal conductor rather than the current ring. For that

purpose, we replace t', T11, bc by 1., 9 i bi - [ro2 _a2 ]1/2, in Eqs.

(lOa), (lOb), (11a), (lb), and (11c). Vhen I - Tnic, where tc

tn[(r 0 + a + b)/(ro+ a - bi)], the coordinates (r, z) describe a circle

which coincides with the inner surface of the toroidal conductor. In terms

of the toroidal coordinates (ni, Fi), the exact homogeneous solution of Eq.

(1) inside the torus is

in b(coshni - cosYi) 1/ ._ CmQm 1 1/2 (coshii)Oeh I - 12(~hl

mmo

lim(c cosm% .S sinai]. (0

For small aspect ratio a/ro , and, to lowest order in this ratio, we have

the appproximate relations:

bi = r0 , e
-1ic = a/2r and e + = pe-i+/2ro,

where (p, #) are the local cylindrical coordinates with respect to the

toroidal conductor (cf. Eqs. (5a), (5b)). Moreover, if it is assumed that

each of the coefficients blam(c) , biam(s) is of order (r0/a)m, then it

follows from Eqs. (17b) and (30) that the homogeneous solution of Eq. (1),

to zero order in toroidal corrections, is equal to

16



nl/2r (a 3 ).f.~
A-ho b 1/2 3

Eno 2 r (a + 1)

[aC cosm + a. sin.. (31)

By redefining the coefficients _('c), %-(s), in terms of the zero order

coefficients ao, am(c) a,(s) , ve conclude from Eqs. (29) and (31) that the

most general solution inside the torus (inside and outside the current

ring) and to zero order in toroidal corrections is

m1

(c) (s)rilbdeeindroth
The undefined coefficients a0 , am  , am ill be determined from the

boundary conditions.

The homogeneous zero order solution Ain satisfies also the zero order

homogeneous equation

I a Aeho 2Aeho33)
-p P Fp + -2 2

vhich follovs from Eq. (1) by expressing it in the local coordinates of the

toroidal conductor (cf. Eq. (6)) and neglecting the terms vith toroidal

corrections.

For the vector potential outside the torus, ve define the toroidal

coordinates (io, to) in a similar fashion, i.e., ve replace t', n' and bc

by t 0 o' n b - fro 2 - b2 11/2, in Eqs. (lOa), (lOb), (11a), (lb) and

(lc). 'When o )1oc' vhere oc a Cn(ro + b + bo)/(ro + b - bo)], the

coordinates (r,z) describe a circle vhich coincides vith the outer surface

of the toroidal conductor. In terms of the toroidal coordinates (no, to),

the exact solution of Eq. (3) outside the torus is

17



Aout ab 0 (coshri cos CO5sil0 )11/ 2
rn-0

* [(c)°ooa. + &(5)siumE] (34)

As before, for small aspect ratio b/ro, ve have the approximate relations:

bo a ro, e- oC a b/2ro and e0° + ito a 2rIe +/P. If it is assumed that

each of the coefficients b S(c), b o (S) is of order (b/ro ), then it

follovs from Eqs. (17a) and (34) that the solution of Eq. (3), to zero

order in toroidal corrections, is equal to

AO~t - n - 2)bo+Z( ) [bmc)cosr, i(
oom + - b(s) sina (35

Mn-1

Here, the coefficients gc), G3(s) have been redefined in terms of the zero

order coefficients bo, bc)y b These undefined coefficients vill be

determined from the boundary conditions.

It is apparent that Eq. (35) satisfies the zero order homogeneous

equation (33), but the solution of Eq. (33) does not provide all the

information included in Eq. (35). The most general solution of Eq. (33)

vhich is independent of the toroidal angle + is equal to C0 + C1 tnp vhere

C. and C1 are arbitrary constants. But Eq. (35) indicates that these tvo

constants are related to each other and their dependence on each other is

established only by solving the problem in toroidal geometry rather than

making some ad hoc assumption. For example, if ve assumed that, at

infinite time, the vector potential outside the conductor is equal to that

of the current ring in the absence of the conductor, we vould probably

obtain the correct relationship betveen C. and C1, but this assumption

18



vould be imposed on the solution of the diffusion problem rather than

coming out naturally as a result from the solution.
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V. .Initial Conditions of the Vector Potential

When Ic, A and a are time dependent quantities, the coefficients ao,

a(c) P(s)I b, b(c) and b(s) in Eqs. (32) and (35) are also time

dependent. Since outside the torus the vector potential is zero at t = 0,

b (t), b~c)(t) and bm )(t) are also zero at t - 0. In addition, the vector

potential is zero at t - 0 inside the conductor. From the continuity of

the vector potential at the inner surface of the conductor and from Eq.

(32), it follovs that the coefficients ao(t), a(c(t), a(S)(t) are not zero

at t - 0. Since the image fields constitute a zero order homogeneous

solution inside the torus, it is convenient to redefine the as yet

undetermined coefficients

a(c)(t), a(s)(t) by subtracting the image solution from them, so that they

are zero at t - 0. As to the coefficient ao (t), in order that it becomes

zero at t - 0, it is convenient to redefine it by replacing it vith ao(t) -

(Uo/2n)Ic(t) (tn 8r0/a - 2). Then, Eq. (32) should be replaced by

Ai (P,#,t) t oc(t) [2(En 1- +

e0 4n2t 2 c o r+ 2~))

- 2 o ~ ) (36a)

r c

rc2

"+E + (t)) 2 P-2t cos ( t)
( a 2a2

" a(t M (i)m'[a~)(t) cosm# + a(s) (t) sin!..]0 + + a m

in-1
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inside the ring,, and

Ain rJ I~)[

A (pt) - 0- '2 'En (36b)

- tn(1 +(At )2 - 2 At) cos(*- a(t)))

+ En ( A )2 - 2 P cos -(t))
( a 2a2

4- (t~~n (s) 12)a

+ a(o + M ac(t) cosm. + a )(t) sin],

M-1

outside the current ring but inside the torus. The vector potential from

the image has a logarithmic singularity at the image position (a2/A(t),

s(t)), vhich lies outside the inner surface of the conductor. Therefore,

inside the torus, it is a zero order homogeneous solution of Eq. (33).

Wben h(t)/p < 1, Eq. (36b) is equivalent to

in o rn aAeo (p,,I,t) - i 1ct L ;

A 0 , # l i' ()+aS(t) sin P

+ So(t) + Z ) osmi (37)

r,-1

vhere a(t), a(c)(t), a(S)(t) are zero at t - 0. The zero initialization

0 m

of these coefficients will lead to simple expressions vhen the boundary

conditions will be applied in the next Section.
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VI.;!Diffusion Fields Inside and Outside the Toroidal Conductor

In order to compute the fields, the zero order diffusion equation must

be solved inside the conductor and the boundary conditions be applied on

its inner and outer surface. The zero order diffusion equation is obtained

from Eq. (6) by omitting the toroidal corrections, namely,

8Acon co;n co n
1 0 1 aA;:= (38)

P T- 7.+- 0 at

In general, let

f(p) - f(t) e-pt dt, (39)

be the Laplace transform of f(t). Then, in the Laplace transform domain,

Eq. (38) becomes

.con 324:n
1 aA 9 1 a 0 on(0

~ ' - pA~ 0,

solution of Eq. (40) is

con
A090 (P,*,p) - COWp I0(xP)

+ L1 I*Xp c,(P/ Cosa# + c(s) p sin..]

rn-i

+ d 0(p) K 0(xP) + Km(Xp) [dm'c)(p) cosm+ + d, s(p) sin.*J , (41)
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where

[ip]1/2,(2

and I m(x), K,(x) are the modified Bessel functions of order m.

The boundary conditions, to zero order in toroidal corrections, follow

from Eqs. (7a), (7b), (8c), (8d), (9a), (9b) and (39). They are given by

in 'con(3)A 0 (a,#,p) - A 0 (a,#,p),(4a

in ^Acon(PPBA G(P,*,p) . ,A0 P#P (43b)
ap Ip-a ap 1pa

and the same two relations at p-b. Defining i~c)(p) and i~s)(p) to be the

Laplace transforms of (A(t)/a)"' cosm a(t) and (a(t)/a)m sinm a(t),

respectively, the boundary conditions at p-a and p-b, using Eqs. (35), (37)

and (41), lead to the following algebraic system of equations:

a (p) -c 0(p)IO Oa) + d 0(p)K0Qa), (44a)

-y 1ccp -X (p)I' (X.a) + d 0(p)K; ('-'I (44b)

(En !-O2  2Jb0(p) - ;0(p)I0 (X\b) + d (p)K0 (M), (44c)

- b (p) -b Xc(p)I;, (b) + d (p)K; (,b)] (44d)

when m.0, and

am m c* (X + d* (p)K(M\), (45a)
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UOq

- - (p)+ +

(45b)

b)()- c(')(p)I (M) + d.* (p)K(,b) (45C)

aMb (P(ibc )(p)Im (.) + ;(')(p)%1 , (Ab)J (45d)

when m u 1, 2, ..., and i - c, s. Als,, I'(x), K(x) are the derivatives

of IM(x), %C(x). The solution of the first algebraic system of Eqs. (44a)

- (44d) is

DOp - IC(p) (46a)

b - I (P 4bb p) W b 1(p) n_- 2 (_ (46b)C [olX)

0 0 [ P r 1r

c0(p) - bo(p) [(tn °- 2 - 2))bK(Xb - K0o<b)J. (46c)

d0p) b(p) [L(En LE - 2)M~ Il(Xb) + 10(X\b)], (46d)

where

I ,\ (#n !-O - 2))\aXb [K1(,\a)I 1 (>Xb) - I (Xa)K (0.b)]

+ )a[K(.a)I 0(\) + Il(a)Ko(b)], (47a)

j M) (En=o- - 21\[.o< >I< > + o<a)K ,<b)]
0 b

24



+ K (\a)I 0o(b) - I 0Oa)Ko( b). (47b)

Similarly, the solution of the second algebraic system of Eqs. (45a) -

(45d) is

% ()- F; (P) ,(48a)

bm (P in m ( ) a) (48b)

- o ,- (48b)

dm'()- bm,)(p b 11 0(.b), (48d)

vhere

E.,)- - '#~ [Im+i(A)Kn~i(),b) - EKmij(Aa)Imi,(b)], (49a)

m()- Xb [.m.a)K._i(.b) +. Km(Aa)Im-i(X)]1 (49b)

and m - 1, 2, 3, ..., i - c, s.

The inverse Laplace transforms of the coefficients given above are

determined from the sum of the residues at the poles of these coefficients.

The poles are computed at the zeroes of Fm(mk) - 0, vhere m - 0, 1, 2,

... , k - 0, 1, 2, ... Since all the zeroes occur for imaginary values of

X, ve define the real quantities atk by means of the relation Xk - ictk.

2Then a pole occurs at pok - -amk /oa (cf. Eq. (42)) and the inverse Laplace

transform h (t) of gm (X)/m (x) is
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2

kmkt
h,(t) -O __'___ tank)

_ 0 (t), (50)

kum )w I e '(kdp1 x- i m ,

vhere F' a(z) is the derivative of FM(z) and e(t) - 1, vhen t > 0, vhile

e(t) - 0, vhen t < 0. Using the convolution theorem in the Laplace

transform domain, ve obtain the folloving expressions for the coefficients

inside and outside the torus:

a

ao(t) M ZAokUok(t), (51a)

k-0

a

bo(t) = ZBokUokt), (51b)
k=O

k-0

b~i)(tM - AB U (t), (51d)

k-0

vhere m = 1, 2, ... , i - c, s, and

e-t/ "ok t t'/ "ok "o

U(t) 1 l ok t- I (t')dt', (52a)ok~t -Je 2n c

U(c)(t) e C I ', (52b)
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U~() M e -t/T J e'Ts "0 1(t'-) ( ats sinsci(t')dt',

(52c)
Also,

2

1 i uk (53a)

As - - 2g(s(53b)

B -w- 2 (53c)

where m 0, 1, 2, .... k - 0, 1, 2, .. Finally, the functions f,(ci),

gm(ci) and the derivative f, I() of f, (&) are as follows:

X0 I J(xo)Yo(x) - Y (x )J (xl~

- (En 8r - 2)x~xl[Jl(x0)Y (x1 ) - Y~oj~

f(cm 23 ii 2 - l-m[J,(x 0)Y.1i(x1 ) - Y*+ (xo)J* ,xi~

(54b)

g0 (a) a i (ici) A (x )y j Y (x )J0(x1)] (55a)

- !Br - 2)x1 [J0(x0)Yl(xl) Y- x)l~ll

g,(i j( ic) - , jx1 J(x )y.(x)-Y(xJ 3 x)] (55b)
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sf'I (at) M iCU (is) (56a)

mf (a) + 1x [J (X0 )Y(X1 ) - Y(x)J4,x 1)]

0l Br 2) 0 xJ( 0 Yx 1 0 Y 0 )(x]

+ a [(n 2r - 2x e.1x[J1 (x)0 ) - Y(x)J(x)]

- f En 0  2) o[J(x)Y(x ) -

cif' (c) a icm FI(iin) (56b)

2 1 [J+(xo)Y(x) -Y+,xJmi

where xo - c, x, = ab, m a 1, 2, ... and J*(x), Y m(x) are the Bessel

functions of order m. Notice that ukare the zeroes of fmom)- 0, for

m = 0, 1, 2, .... k =-0, 1, 2, .

From Eqs. (36a), (36b), (35), (51a)-(51d), we conclude that the zero

order vector potential inside the ring is equal to

in P +Aeo(p,#,t) 4-n I4 t) [2(P-n +~ 2)

- 2a(t) -2PA(t)cos(+4-s(t)) (57a)
r2
c

28



+ Ln( + (*C~1 2  IV 2Cos (*- (t)))

+ A A LE [(c(t)cosm# + Um~)sinm*]
Z okuokt' + k-Os
k-0s

Outside the ring and inside the torus (i.e, p S a), it is equal to

A(prt) - ;- ic(t) [2 En (57b)
P

- n (+at)2  2 A cos (t

+ En + (A t)) 2 pA~t) cos (# - t)
a a

Z Zouok(t) + k Mm~a [U.(k)(t)cosm# + U ok~in*
k-0 rn-i knO

and outside the torus (i.e, p b) it is equal to

m
A ou t t  (I-n ! t 2-r 58

ot ,*,t) - ( "- 8 okUok(t) (58)

* ' .' r(' (s)t, .
+ B ~ (b) [ UL )(t) cosm= + U (t) sin]
rI k-O

From Eqs. (52a), (52b) and (52c) it is easy to shov that the time dependent

coefficients Uok(t) k (c)(t)- U k(t) satisfy the first order differential

equations

Uok(t) + - Uok(t) = Uok Ic(t)' (59a)
ok ok
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1 k k o C. v..

1 0i _Mt + U~)( - I)(o) -U sinna(t) (59c)

vith initial conditions Uok(0) (c) a 0, for a 1,

2, ...,k a O, 1, 2, ... These differential equations are very useful vhen

the current ring moves and its equations of motion depend on the diffusion

fields, i.e., vhen the ring dynamics is coupled to the diffusion fields.

Then, the state vector of the system consists not only of the position and

velocity of the ring, but also of the diffusion coefficients Uok(t),

U__ ' m(t), for m - 1, 2, ..., k - 0, 1, 2, ..., and its time

derivative is determined by the ring dynamics, as well as by Eqs. (59a)-

(59c). Notice that it is much easier to solve in the computer a set of

coupled first order differential equations rather than a set of coupled

first order differential equations and the convolution integrals given by

Eqs. k,2a)-(52c).

Next, four exact identities vill be established for the time

independent coefficients A,,, B,,. For a motionless, step function ring

current, i.e., vhen Ic(t) - 10 e(t), Eqs. (51a)-(51d) and Eqs. (52a)-(52c)

give

ao(t) = 1 0 Aok -t/T ok) (60a)

k-o

bo(t) - Io Bok 1 B - e -t/°k), (60b)

k-o
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U

a(C)(t) + i a(_)(t) - 0 ima .B. -t/mk (60)

The Laplace transform of I,(t) is I (p) = Io/p, and ve have from Eqs.

(46a), (46b), (48a), (48b):

o p 
1 io 

,
a O(-) Io 2R -0 ( (61a)

b (p) - (61b)

=( ) + (-9) o ( g°1 *),  (61c)* p)iao ( ) er.1ia

(C)(p)+ib*(p)mlI eau (61d)

From the vell-knovn theorem of Laplace transforms it follovs that f(t) =

pf(p). Eqs. (47a), (47b), (49a), (49b), give

j o(x ) . 1, (62a)

8ro
Lo(X) En O - 2, (62b)

F r(X) m (62c)
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ina*() - ().(62d)

Application of the theorem just mentioned in Eqs. (60a)-(60d) and Eqs.

(61a)-(61d), in conjunction with Eqs. (62a)-(62d) leads to the following

identities:

Z Aok = En 8 - 2, (63a)

aa

Z 5ok m 1 (63b)

k-o

it~ (63c)
k-o

mk m (63d)

k-o

These identities have been verified by the computer for a thin as well as a

thick conducting wall. Substitution of these Identities Into Eqs. (60.)-

(60d) when t - ,leads to

tu a M(t) . o (En B-R- 2), (64a)

tjA bo(t) a % 10 (64b)
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With the help of .these identities and Eqs. (35), (36a) and (36b), it is

easy to ahoy that, as t 4 -, the zero order vector potential inside and

outside the toroidal conductor (as veil as inside the ring) becomes equal

to that of the current ring in the absence of the conductor, i.e., it

extbecomes equal to Ago , due to the diffusion process. This conclusion

demonstrates the importance of the identities (63a)-(63d).

The magnetic and electric fields inside and outside the torus can be

computed from Eqs. (57a), (57b) and (58). Thus, the self-magnetic and

self-electric fields, i.e., the fields of the ring at its centroid p .

A(t), * = m(t), are equal to

BselfR- A At)) 1 (65a)op t- Ak _ m -

m=i k-o

*[ u (t) cosms(t) + U"ik(t) sinme(t)

self t a IB04"M - - R Ic(t) a - (A-kt)2) (65b)

+A M Z ~t))r-1

m-1 k-o

* [Uc)(t) cosma(t) + U(s(t) sinma(t)

self M to * M a +I+ En (1 (a-) 2 )]

oo 2n c rc

x(t)x c (t) + z ct)z C(t)

2cn' c 2

~~j~t)1 - (Act)U9
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- o~k I(t M Ukt] (65c)
Ito ok co~)

m-i kuo

-mVt) cosm(t) - U(S)(t)

where xc(t) - (t)cosa(t) and z c(t) - a(t) sina(t).

The last three relations, and in particular the Bself component wereop

useful in providing an analytical model for the beam trapping that occurs

after injection in the modified betatron accelerator.

A typical example of the effect that the diffusion process has on the

ring dynamics, immediately after injection is shown in Fig. 2. The

numerical integration of the ring equations of motion coupled with the

diffusion fields was done for the parameters listed in Table I. Figure

2(a) shows the projection of the centroid orbit on the r-z plane that moves

with the same toroidal angular velocity as the ring centroid. There is a

slow (bounce) motion and, due to the presence of the stellarator windings

(i.e., strong focusing), the.e is also an intermediate motion. Both of

these modes are indicated in Fig. 2(a). Since there are six field periods

of the stellarator field in the range o S e 2n, the electrons perform six

oscillations during one revolution around the major axis. To take into

account the intermediate motion that has been neglected in the diffusion

model presented in this paper, the resistivity in the code is computed
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using the skin depth that corresponds to the intermediate frequency and not

the actual thickness of the vall. The dots in Fig. 2(b) shov the positions
S

the bean crosses the r-z plane at 0 w 0 . The time difference betveen tvo

dots is equal to the period around the major axis, i.e., - 27 nsec, and

therefore the speed of the ring on the r-z plane can be inferred from the

relative position of the dots. Fig. 2(c) provides the relativistic factor

y vs. time and the reduction in y is obvious due to the energy lost on the

resistive vall and to establish the electromagnetic field outside the

torus. Another example is given in reference 13, vhich refers to the bean

trapping in the modified betatron accelerator and is in good agreement vith

the experimental results.
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VII-. Approximate Results for a Thin Conducting Vall

The results presented in the previous Sections are approximate in the

sense that they include only zero order toroidal corrections, i.e., are

valid only for small aspect ratio vessels. Othervise, they are exact. In

this Section, the additional assumption is made that the conducting vail is

thin. This assumption alloys us to compute approximate expressions of the

zeroes ank of fr(amk) - 0 (cf. Eqs. (54a), (54b)) and of the vector

potential and the fields.

Vhen the conducting vall is thin, i.e., (b-a)/a << 1, both xo so a and

x 1ab, vhere a is a zero of fm(u) - 0, are very large numbers and the

asymptotic expansions of the Bessel functions can be used in Eqs. (54a),

(54b). This is valid only up to some maximum value of m. Keeping terms up

to order 1/z, the asymptotic expansions of Jn(Z), Yn(z) are: 16

JnZ) W [~ Ln 4n2 _- 1 sin Xn] '  (66a)

n WE? [CsXn-

Yn(z) - JL' [sin Xn + 4n 1Cos Xn], (66b)

vhere Xn = z - (n + 1/2) n/2. Ve substitute these expansions into Eqs.

(54a), (54b). Then, the zeroes of fO(aok) - 0 are determined from

tan(x- x0) 8r 1  (67a)

(1-n -ro - 2)x0 '

while the zeroes of fm(amk) - 0 are determined from

tan(x - x 2 (67b)
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A more accurate expression for the zeroes of fm(ork) . 0, correct to order

2
(m/x0 ) , is derived in the Appendix, and is given by

a2 _1 2
2m 3 m -Z i D--a

To-x 2 Y -~a )0 XTj~
tan(x1 - x0) 0 (67c)

If x0 > 1, ve see from Eq. (67a) that Ix1 - << 1. Therefore,

tan(x1 - X0) a x1 - x0 a (b - a)a, and one of the zeroes is

1/2

8r 1 (68a)#no = 8r- 2)a(b -a

vhile the others are given by

kn
%k b -a' (68b)

vhere k - 1, 2, ... The small additive correction term 1/[kn(tn(8r0/b)

- 2)a] has been omitted in Eq. (68b). The zeroes of Eq. (67b) can be

obtained in a similar fashion, except vhen m is as large or larger than x0

Let m = 1, 2, ..., H, vhere H - Int[a/4(b - a)), and Int(x) is the integral

part of x. Then one set of zeroes of Eq. (67b) is approximately given by

1/2
%0o b -( a)] '(6a

-2
vith an error of only a fev percent vhen (b - a)/a < 10- • For m as

specified above and k - 1, 2, ..., K, vhere K = Intla/n(b - a)], the rest

of the zeroes are given by

kn (69b)smk b- 9 a'
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The small correction term [2m + (kn)2 /21/(kxa) has been omitted in Eq.

(69b). For values of a and k larger than H and K, respectively, the zeroes

should be computed numerically from Eq. (54b). Notice that the presence of

the terms (p/a)m and (b/p)m in the series expansions of the vector

potential and the fields indicates that the large values of m become

important when these quantities are computed close to the conducting wall,

where p/a and b/p become almost equal to 1 and more m-terms must be

included in the sums to converge within a prescribed accuracy. An estimate

of the minor radius pi within which the vector potential and the fields are

sufficiently accurate is determined by pi/a - [(b - a)/a]1/H. Since

(b - a)/a << 1, all the terms associated with (p/a)m , for m H + 1, H + 2,

... in the series expansions of the vector potential and the fields, have a

negligible contribution, provided p pi. A similar argument can be made

for the vector potential and the fields outside the torus. Their accuracy

is within a few percent when p k p0 , where p0/a - [a/(b - a)] / . Within

the distances di M a - P, and do - Po - b from the inner and outer

conducting walls the zeroes (and, therefore, the vector potential and the

fields) cannot be computed analytically in terms of a simple expression.

In this case they should be computed numerically from Eq. (54b) and then

use the analytic expressions for the vector potential and the fields. As

an example, when (b - a)/a 10-3 , then H - 250, K - 318, di/a = 0.027,

d0/a - 0.028, but when (b - a)/a = 10-2 , then H = 25, K - 31, di/a = 0.17,

d0/a - 0.20. In the following, the various quantities will be computed to

order (b - a)/a, with the understanding that they are not accurate close to

the conducting wall. But in the limit when the ratio (b - a)/a tends to

zero (but a(b - a)/a remains finite), i.e., when the toroidal conductor

becomes a toroidal conducting shell, the distances di, d0 are zero and the

results become exact, to zero order in toroidal corrections, everywhere

inside as well as outside and in the vicinity of the torus.
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-.Under the assumptions stated above, the time constants 'Ck in q.

(53a) become

Br0
Too 2 (tn 2)9 (70a)

Tok -- (70b)
k

TD (70h)

"FD - (70d)

vhere

o a(b - a)a
TD 2 ' (71a)

-~ )2 ,(71b)

and m - 1, 2, ..., k - 1, 2, ... Therefore, there are three characteristic

time constants associated vith the diffusion process. The "loop" diffusion

time Too is the slovest and determines the speed vith vhich the external

field of the ring diffuses into the hole of the doughnut. This time is

present because of the toroidal geometry of the conductor. The "cylinder"

diffusion time TD and the "fast" diffusion time FD are associated vith the

diffusion process in a cylinder and determine the speed vith vhich the

field of the ring penetrates the conducting vall. Notice that, in the

limit of a toroidal conducting shell, any terms associated vith the fast

diffusion time -cFD diffuse instantaneously at t - 0 outside the torus.
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This, explains the origin of the electric field that is imediately

established at t - 0 outside the torus for the -shell model (cf. statement

after Eq. (90) in the next section). on the other hand, we know from Eq.

(58), that the magnetic field does not diffuse instantaneou~sly at t - 0

outside the torus.

Under the same assumptions stated above and to lowest order in

(b -a)/a, ye have the following approximate relations

A En ri - 2 - 1 b -a (72a)
0o a 3 a'

A 2 b -a (72b)
ok (n2 a-

A b -a (72d)

B 1+1 b-a (73a)
B00  6(tBr0  -2) a

B ___2_____1 __ b a (73b)
ok= 8r 02 a

(E~n -6- - 2 )(kn)2

B 1 4 b -a (730)

B 4 -1 - a (73d)
mk (kn)2 a

for m 1, 2, ... , k 1, 2, .. The relations (73b), (73d) were derived

directly from Eqs. (56a), (56b), while the relations (72b), (72d) were

derived with the help of Eqs. (73b), (73d) and the relations g 0(%~k)

( )k(E~n 8r 0/a - 2), g m(ask) a (-1) k, for m - 1, 2, ... , k a 1, 2,
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Finally, Aoo, A00, Boo, Bno vere derived using the identities (63a) -

(63d).

As mentioned above, the terms associated vith the fast diffusion time

cFD vary in time on a much faster time scale than the terms associated vith

the times 'oo and cD. If the ring current Ic(t) and its position (A(t),

a(t)) vary slovly vithin a fev e-folds of TFD' then the part of the vector

potential (or the fields) vhich is associated vith TF) can be simplified

considerably.

First, let us consider the self-magnetic field. Substitution of Eqs.

(70b), (70d) and Eqs. (72a) - (72d) into Eqs. (65a), (65b) leads to the

relations

,:elft 2m bi& - a r (74a)

M-1

* [-u(S)(t) cosme(t) + U( c ) sinma(t)]

t t - to, k2

4 b - a 1 elflt '  dt',
k-1

Bself - o At 1
1 - aI(t) ( 1b

1 23 ba k a)

m=1

* [Uo)(t) cosma(t) + (t) sinma(t)]
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4 b- a FD
+k b- hself(t, t-t,) e a dr',

xT ar T

vhere

self __ ___o

h (, t') - 1 (t) At') (75a)

2 -", (t,),(,')) cos (*o<,,- a,,,)-, 2 A(,t),,'
k . a2  a2

" (A (tt')2 2 AtA() Cos ((t) '
kI a - 2 t o - (t'))]

IAo

-se t tV) - I )W) (75b)
s 2n c a

S [i- 2 2)2] sin (st -:

+ [ AM.A'2 
2 a(t)a(t') os (t(t) - M t,)1] "

La 2a a)'t-)a]

If Ic(t - t'), A(t - t'), a(t - t') vary only slightly as t' varies vithin

a few e-folds of -FD, they can be replaced by Ic(t), A(t) and a(t), except

in the sine in Eq. (75b) ve should set a(t) - a(t - t') a a'(t)t' to get

the lowest order contribution. Here a'(t) is the derivative of a(t).

Equations (74a) and (74b) then become

oB a .(a)sn ( )]
rn-1

• Un U (t) cosma(t) + Uno (t) sinme~t)

42



b-a I +
+°. b - a2 o a t + Ia- )2

Bself - 1 -o (A--))

aa

o$ (t) - b-a)-(a )rn) i

rn-i
c(s) 1

Bo# M(t) cosm(t) ( i

b-a 2I 1
2m-2-

a+ ~ ct T 2 t A))

Afte a ev -fods f "FD'the sum over k becomes equal to 32/6 and there

Afer a e efoPo

is a residual contribution in the self-magnetic field from the fast

diffusin terms. Since (b - a)/a < 1, Eqs. (76a), (76b) indicate that

this contribution is small unless the ring is close to the conducting vaill.

But in that region, these relations are no loner valid and, therefore,

they provide only a hint as to the significance of the fast diffusing terms

when the ring is close to the conducting vail.

43



.-.From Bqs. (65c), (70b) (70d) and Bqs. (72.) -(72d), and to lowest

order In (b - &)/a, the electric field at the ring centroid In given by

zoo(t M M ~t [t -n +. + Ln~i

x (tM) c (t) +e z C(t)z (t)

Po a
a

+ U0 (t) + 2Z (&t u [ (t) COSmS(t) + U~s0 (t) jjnat

1 [~O~(~) self(t, t)] (7

IL lO-I [It) + h ek(77

k TFD

12 h [self (t~t) - _I Jhself (t~t-tp)e t

where

h self POIW)(8

to$ (um(t mwc~)) - A( t)6(t')

2 a2
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Vhen.I C(t), A(t), a(t) vary slovly, in a similar fashion as for the self-

magnetic field, ve obtain the simplified equation for the self-electric

field

self(t) 0 [C . a + 1 +(

x C(t)c (t) + z c(t)C(t)

C- C C 9

ko  a 2

S uoo(t + 2 Z (At) [Vc)(t) cosme(t) + U()(t)sinm(t)

° (t) 
a 1t 1

03(o, •-t/TD ) 1 +2 Yt- 2  (79)
-X TD 93(.1 (1 )) 2 21-

where 03 (z, q) is the theta function of order 3,16 i.e.,

93(z, q) - 1 + 2 qk cos 2 k z. (80)

kxl

Notice that 3 (0, q) can be expressed in terms of the complete elliptic

integral of the first kind K(m), i.e., 03(0, q) - [2 K(s)/i]1 /2 . Here, m

is related vith the nome q by the relation q - exp[-x K(1-m)/K(m)] and vhen

q tends to 1, then m tends also to 1. When t/TFD << 1, the nome q is very

close to 1, and in this case K (1-) a K(o) - n/2, so that

[2K(m)/n]1/2 = In/tn(1/q)] 1/2 . Therefore, 03(o, e-t/ )D ) a [rd(t/ lF))]1/2

i.e., the self-electric field is proportional to Ic(t)[CFD/tl1/2 vhen t/ FD

<< 1. If the ring current is a step function of time, i.e., Ic(t)

10 (t), then the self-electric field is infinite at t - 0 (actually, it is

infinite everyvhere inside the torus). This result is not surprising if ve
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take. into account that the vector potential rises in time instantaneously

at t - 0, because the ring current does so. Vhen t/TPD " 1, we have 3(o,

e - t/ F ) 1 and the fast diffusing part in Eself provides

contribution.

Finally, consider the electric field outside the torus, i.e., vhen

p b. From Eqs. (4c), (58), (59a)-(59c), (70d) and Eqs. (72a)-(72d) we

see that, to lowest order in (b-a)/a, it is given by

Eout E n -- - 2 U1M()
Bo [P$t B r0  ol ) 11

s- RDEn80- 2 0

+ 2Z b) (c)(t) cosm+ + U~s)(t) sinm.)

Br
- n-0-- 28ro  p-0 1c(t) + ho (p, *, t)

7 [ 8r -I 2 ' 2
1rn 02 o  ( k2 t -

-S--- k-i1 )
r . 0  t k 2

n - 2 (-1) kp, ,t) - k I O t-t)eD dtj ,

TV 0 FD
k=1

where

ho(P,*,t) M M (82)
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*1 Cos (,.t)b6t) (
, ~pa.2"" ~bat Cos -6(,t"C* ))

When It(t), A(t), c(t) vary slowly, sq. (81) simplifies to

r oEoUt (p,,t) -1 2 Uoot) (83)

I [tn - - 2

+ 2 rni u~c(t) Cosa# + U~:)(t) sins.)

Ln 8r, 2
-4 1 I(t) + ho(1,t)

vhere 04(z, q) is the theta function of order 4,16 i.e.,

94 (z, q) - 1 + 2 . (- 1 )k qk2 cos 2kz. (84)

1/21

Notice that 94(0, q) - [(l-m)112 2 K(m)/n]112. When t/lFD << 1, the none q

is very close to 1 and in this case, K(m) a (1/2) En[16/(1-m)] and 2 K(m)/I

= n/tn(l/q). Therefore, we have

2 1/27FD

94(0, - t / FD) 2 n e ,2(ti FD) (85)

i.e., when the ring current is a step function of time, the electric field

is zero at t - 0 outside the torus. On the other hand, when
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t/FD>> 1, then 4( 0,e 1 1 and the electric field reduces to

that computed from the shell model. It appears, therefore, that the fast
diffuing art i out

diffusing part in Eout contributes the exact amount needed for E ut toBo t

vanish at t - 0, but very quickly Eout increases to the value predicted by

the shell model when the conducting vall is thin.
To calculate the vall current density Jvll (P,,t) - +,t) the

electric field inside the conductor is needed. From the continuity of the

electric field at the inner and outer surfaces of the conductor and when

o 1, Ec varies from a very large value at the inner surface to a

very small value at the outer surface. Hovever, vhen t/TFD >> 1, but t/D

<< 1, and in the special case of a thin conducting vail, it is easy to show

from Eqs. (57b), (72a), (72c) and (83) that the electric fields at the

inner and outer surface are approximately equal to each other. In the

extreme case of the shell model, they become exactly equal to each other,

avall+and the surface vail current density is equal to Jes (*,t) = e(b

a)EUt (a,+,t), where Eot (a,,t) is given by Eq. (83). The surface vall
-wll is coptdb.itgaigwal.

current I ( w t) is computed by integrating Jes (#,t) over the poloidal

angle *.
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VIII. Tvo Applications for the Shell Model

When (b-a)/a tends to zero but a(b-a)/a remains finite, i.e., for the

shell model, Eqs. (57a), (57b) and (58) simplify considerably, i.e.,

in - 0 (to a(t) [2.0cn 2

inside the ring (r' + r ),

S(p,*,t) - ti1  2nn r a (86b)

+ n(i + PAt)) 2 2AKt2. cos (* - (t))](8a
a a

,,Br. B' ,,, . (s).-.,,,1

+(in ar - )Uot + 1 1~ U~c)(t) cs++U ('t) sin#),

+ aJ 30 + -0

outside the ring but inside the torus (p a), and

o+t t ( n r - 2) Uoo(t) (87)

+ - (Z( ()(t) cosrn + US)(t) sin.s),

mMal
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outside the torus (p I a), vhere p' Is defined by Eq. (27b).

First, consider the case of a motionless ring, i.e., A and a are

constant, and its current is a step function of time, i.e., Ic(t) - 10

e(t). From Eqs. (52a)-(52c) ve have:

110Io( _ et/'roo
U00(t) - - I 0(i - e (88a)

o U - %() eimm - TD , (88b)

and the vector potential becomes:

Ain "  V 3[ n 8% 2Ao(P,#,t) - 4- I 0 o_ [2 (n - Gg c )  (89a)
90""'' rn 01c c

- 2(In !r -2)e-t/'oo + n + e t/e )2- 2 A t/D cos( -a)]

inside the ring (P' < rc),

(pt) - 0I [2 (n-O - 2) (89b)

8r - ~ o -P / D - t/ TD II+ -

-2 rn -2 - 2e + I n + 2
(I a(1 ka 2a2

outside the ring but inside the torus (p S a), and

Ao 0+t0 -o [2 (In 8ro 2) (90)

(A -t , -t/Do(_)90~ 48 r °

- 2 (In !- 2)e-t/ + E.n + (e-t/D) - 2 e
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outside the torus (p a). Notice that although AO t(p,#,t) is zero at t .

0, its partial time derivative is not zero at t - 0, because, as explained

in the previous '-ction, the fast diffusing terms vhich render the electric

field zero at t - 0 outside the torus, are missing in the shell model.

Also, notice that at t-o the vector potential is the sum of the external

vector potential of the ring and its image, but for t>>o only the vector

potential of the ring remains present.

As a second application, consider the case in vhich the ring moves on

a circle, i.e., 6 is constant, a - wt, and its current is a step function

of time, i.e., Ic(t) 10 (t). From Eqs. (52a)-(52c) ve have:

Uoo(t) o - 1o1- e °, (91a)

m t

(c) M . AIm cosmwt + WTD sinm(#t - emo ) - ' (91b)

t

(t.uo m sinmwt -'rD cosmwt + wrD e TD

to1 + () 2  , (91c)

and the vector potential becomes:

Ain F° [ 8 r°  3)2

Ai (p,*,t) L o 10 12 (Inr- -2 - )- 2 (92a)

2 0 4n. rr 2e -  o 0 i 2)P2 )

- -(In - + n + - 2 P- cos(-,wt))

a (1 (a 2(a
i (En t -. 2 P- cos( -ot) )

1 + (tD) 2  2 i1 + a2) -2 a2
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In +~ (IDA -2 A -t/

I'~ ~ e~i(-&t COSOin*

aa

inid theA ring-ot (p'f e-t )sn

inT (p,* t I - -o[ (Lnta Br 2)29
j7(#Wt -tT

+ (CD)of.e Cs

insde hrin (pr(-ct r~ ~ sin

Ai 11 o2 2 rO-2 9b

1 +( 1-n !rct2an tT0 I 104 2a 2rt A c t/r jj
a2- cos+(PA ) COBP cs#-t

a2a

out (p,(+,t) "a-t TT si2 w (Ar ta '0 2. -L - (93) a __ -t

- S 0 -2) ~ + +R2 -2 A e Cos#.co
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(1 + 2 2 " cos(+..t))

+,, [(" -"Ds")l
En(1+ (e t/ TD)2 2 t/TD cos(+-t

S+ U )2 rn- sn(i-wt) e •

-- cos(-) rean t
p p

outside the torus (p a). There are tvo extreme cases of interest:

i) vhen «D << 1; then the vector potential is the same as that of a

motionless ring. ii) vhen -rD >> 1; then there is diffusion of the terms

associated vith the loop time oo1', but the Image fields do not dissipate to

zero, but they follov in phase the circular motion of the ring.
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IX. Conclusion

The diffusion of the self magnetic field of a beam inside a toroidal

conductor is governed by three different diffusion times. The loop time

roo is responsible for the diffusion of the fields into the hole of the
doughnut and, after a few e-folds of the fast diffusion time, the time

behavior of the wall current is completely determined by roo. The

"cylinder" diffusion time TD is responsible for the dissipation of the

image fields which are present initially, but they vanish after a few

e-folds of -rD, if the ring current does not vary with time. Finally, the

fast diffusion time is responsible for the electric field outside the

conductor to be zero initially, but it acquires approximately the value

associated with the shell model after a few e-folds of TFD"

After a few e-folds of the loop time and if the ring current does not

vary with time, the vector potential becomes equal to that in the absence

of the conductor. In addition, to zero order in the toroidal corrections,

the radial component of the self-magnetic field, which is responsible for

the beam trapping, is independent of the loop time. Therefore, the time

scale of the trapping mechanism should be independent of Too" Reliable

results close to the conducting wall can be obtained only by numerical

computation of the poles and by including a very large number of terms in

the series expansions of the vector potential and the fields. But in the

extreme case of the shell model, the results are exact everywhere inside as

well as outside and in the vicinity of the torus. This model provides

quite an accurate description of the diffusion process for a toroidal

conductor with a thin wall, except during the first few e-folds of TFD'

since the effect of the fast diffusing terms is not included. Due to the

simplicity of the shell model, it is rather easy to compute the first order

toroidal corrections. These results will be reported in a future

publication.
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Appendix

An expression for f. (a), given by Eq. (54b), vill be derived here,

correct to second order in mix 0. Using the multiplication theorem for the

Bessel functions, ye obtain the relation 16

2 1_ (aa (Al)R-x-f m~ E (xo)Y -(x)- Y (x)Jm(xl)0x 1 + ~ ~ ml

-~~~ ~~ ') k~L2 I 2 a 0) [Jml(xo)Ym-l~k(xo) - u..1(xo)Jm-l+k( 0)].

With the help of the identities

Z (x ) Y, (A2b)

z ~ ~~~ (x L f( kb

where Z E(x 0) Is either J L(x0) or Y t(x 0), ye can show that

J,(xo) Ymi,(Xo) - Y 1+(xo) Jm-i(xo) - ;2m (AOa

J,+1(x0) Y(xO) - Ymi,(XO) Jm (Xo) . 2 (A3b)

J*+1(x0) Y,+2 (xo) - Ta+1(x,) Jm.2 (xo) _(Ac

and for E - 1, 2, ... we can also show that

Jm+i(xo) Y 4 t.-(xo) Ymi (xo) Jm+4t-i (xo)

2 [..2(2E-1)(m+2E) + o(A4a)
0 0 o

.m+1xo) *m+4txo) - m+t.o 0 0txo
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2 . [ 4E(2C-l)(z+2)(n+2L+l)' + oij] (Mb)

0 0

i M~~o Yme.4t+i('xo) - Y.+1 (xo) Jn*4t (x4o)

2 4t(+2t+) + 0 )] (A4c)

0

.+1 (xo) Y.+4 1+2 (xo) - Yn 1(xo) J*+4t42 (x4,)

2 [1 + 4(2t+)(+2t+)(i+2+2) + o (A4d)

Therefore, ye conclude that

f~*~ f(cL) L sin p a2 x)

(k+)(;k 2 a 2  2k+4
- ~ Z -()k (k+4 ~k 2 a ) (A5)
*0k-0O2+) 22 0

a2 2 4E+1
4 Z' E(2E-l)(,+2t)(m+2E.+l) a a

*02EI (4E4.1)1 2a2  0

4 -EZ (4E.+1)(m+2t+l)(m+2.+2) ( 2  a2  4t4
x2(4E+3)1 2 0

where terms of order I/x 3 and higher have been omitted. A straightforward

and lengthy calculation leads to the relations

Z (-1) k (k+l)(m+k+2) z 2k+4 (A6a)
(2k+.4)1

k-0
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2 • - z - ,+4 2coSZ,

Z t(2t-1)(n+2tl)(m+2t+l) z4t+)

t.-1

- L.' (4E+3)1 .

y)( + I 1 sin:z

- ) g [Z2 + 3(. )os Z.

Substituting Eqs. (A6a), (A6b) into Eq. (A5), ve conclude that

1 f( [1 (a - 2 a2 .

3.02 a2 2 b2  =a 2 4 3-T j - - . 2o - 2a 0

10 n 2 2 2 0
2 a2

2

22 2 1' (22 2

+x 2 + - -X

0 0

+ O(t))]cos I2 -a2  )
0 .0 2 a2 x0

02a
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Ve. use that the zeroes of f (a) are given by the rt" 'on

tan 2k 2a 2 xo) - A/B, (A8)

vhere

A2 1 aa 2 . -(m ) 2 a22
0m 22 % 2(b aV

2y 222  1)"'

- - -2 - - 1)(" ) + 2 2a 2

1(2  a2 " 4 2

correct to order (m/x0 )2 If (b - a)/a <<, and x0 >>1, the relation above

simplifies to

2- 3 + 1 (b- lo
;-2 x 2 2 C a) 'o,

tan (x° x) 1 l (A9)

,, 1 b o - a + ( - 3) (a.+ 1 -a) -
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Table I. Parameters of the run shovn in Fig. 2

Torus major radius r0  100 cm

Torus inner minor radius a 15.2 cm

Torus outer minor radius b 15.217 cm

Strong focusing radius po 23.4 cm

Strong focusing current ISF 24 kA

Strong focusing Periodicity m 6

Vertical magnetic field Bzo 26 Gauss

Toroidal magnetic field B 4000 Gauss

Beam relativistic factor y 1.69714

Beam minor radius rc 3 m

Beam current Ic 0.5 kA

Wall resistivity 8.84 mg cm

Intermediate frequency 'IV  1.8 x 109 sec- 1
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Fig. 2 Beami centroid orbit 1(a) and (b)] and relativistic factor vs. time

[(c)J from the numerical integration of the ring equations of motion

coupled with the diffusion fields.
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